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Fractal dimension and degree of order in sequential deposition of mixture

M. K. Hassaf
Department of Physics, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
(Received 9 January 1997

We present a number of models describing the sequential deposition of a mixture of particles whose size
distribution is determined by the power lgwix) ~ ax* 1, x<|. We explicitly obtain the scaling function in
the case of random sequential adsorption and show that the pattern created in the long-time limit becomes scale
invariant. This pattern can be described by a unique exponent, the fractal dimension. In addition, we introduce
an external tuning parametgrto describe the correlated sequential deposition of a mixture of particles where
the degree of correlation is determined Bywhile =0 corresponds to the random sequential deposition of
a mixture. We show that the fractal dimension of the resulting pattern increagefaseases and reaches a
constant nonzero value in the limgt— when the pattern becomes perfectly ordered or nonrandom fractals.
[S1063-651%97)09905-4
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I. INTRODUCTION cial as it differs in two ways from the fractals that occur in
nature. It does not have any kinetics and it does not have any
The formation of stochastic fractals is an active field ofrandomness.
research both theoretically and experimentally. Yet the In this work we introduce a stochastic process allowing a
mechanism by which nature creates fractals and the relatiomumber of intrinsic tuning parameters that may be consid-
ship between the degree of order and the fractal dimension isred as a natural kinetic counterpart of the classical Cantor
poorly understood. The history of describing natural objectsonstruction and is a potential candidate in order to under-
by geometry is as old as the science itself. However, tradistand the essential governing rule of creating complex ob-
tionally Euclidean lines, squares, rectangles, circles, spheregcts. These intrinsic tuning parameters are used to determine
etc., have been the basis of our intuitive understanding of thehe degree of randomness and the rate at which a given op-
geometry of almost all natural objects. But nature is not reeration is repeated to create a fractal. The interval is chosen
stricted to Euclidean space. Instead, most of the natural olfer breaking stochastically, and once an interval is chosen
jects we see around us are so complex in shape that convetive cuts are placed randomly on the interval, while the de-
tional Euclidean space is not sufficient to describe them. Ifyree of randomness is determined by the precise choice of
appears to be essential to invoke the concept of fractal gateposition kernels. Thus, starting with an infinitely long in-
ometry to characterize such complex objects quantitativelyterval, what remains in the long-time limit is an infinite num-
It further enables us to search for symmetry and order eveber of points scattered over the intervals. The properties of
in disordered, complex systerfis,2]. The importance of the these points create a set that appears to be statistically self-
discovery of fractals can hardly be exaggerated. Yet there isimilar and is characterized by a fractal dimension.
no neat and complete definition of a fractal. Instead one as- The construction of stochastic fractals we consider is not
sociates a fractal with a shape made of parts similar to thet all pedagogical. One immediate and potential application
whole in some way. It is typically quantified by a noninteger of the stochastic fractal is the sequential deposition of a mix-
exponent called the fractal dimension that can uniquely charture of particles with a continuous distribution of sizes. How-
acterize the structure. This definition immediately confirmsever, the model we consider in this work mimics the con-
the existence of scale invariance, that is, objects look théiguration when objects once inserted are clamped in their
same on different scales of observation. To understand fragpatial positions for which nonequilibrium configurations are
tals, their physical origin, and how they appear in nature weyenerated. The random sequential absorption processes have
need to be able to model them theoretically. This forms parbeen found to describe many experimental systems, namely,
of our motivation of the present work. the adhesion of proteins and colloidal particles to uniform
The simplest way to construct a fractal is to deterministi-surfaceg3,4], the reaction of various polymer chain systems
cally repeat a given operation. The construction of a classicaduch as methyl vinyl ketonks], and many fields in chemis-
Cantor set is a simple textbook example of such a fractal. ltry and physics. Although the process is conceptually simple,
is created by fragmenting a line into equal pieces and understanding its kinetics analytically is a challenging prob-
removingn—m of the parts created and repeating the pro-lem (see an excellent review artic|6]). The deposition of
cess with them remaining piecegl]. This process is re- particles of definite sizes in one dimension has been solved
peatedad infinitum However, this construction is too artifi- exactly and analytically in both continuous and discrete
cases. The continuous version of this model is known as the
random car parking problem. Recently, the deposition of a
*Permanent address: Department of Physics, Shahjalal Scienerixture of a small number of definite-sized particles has
and Technology University, Sylhet, Bangladesh. Electronic addresdeen considered7—9]. In Ref. [10] Bartelt and Privman
Kamrul.Hassan@brunel.ac.uk solved exactly the one-dimensional lattice version for depo-
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sition of a mixture when it is composed of fixed-size andplay any role in determing the degree of randomness. The
pointlike particles. These studies reveal that if the mixturekernelF(x,y|z) is defined as the rate with which an interval
contains a small number of different sizes then the variougx+y+2z) is destroyed by depositing a particle of size
geometric kinetic characteristics are primarily determined bycreating two new intervalg andy. The parking distribution
the smallest size. From the experimental point of view, thefunction p(z) is the probability of attempting to deposit a
deposition kinetics of well-defined mixtures of different particle of sizez. The deposition of a mixture of different-
types of particles is of great importance. It is well known thatsized particles is achieved by choosingpéz) power-law

if objects are of definite size and once deposited are clampefdrm of parking distribution function with respect o We

in their positions, nonequilibrium configurations are createdobtain an explicit scaling solution and show that the resulting
with a strong nonergodic and non-Markovian natlr]. In  pattern in the long-time limit is scale invariant in both time
this case, the resulting system does not produce a scaland space. In Sec. IV we consider correlated sequential
invariant pattern. Instead, it reaches a jamming limit when itdeposition of a mixture of particle@énodel Il) by choosing

is impossible to place further objects without overlapping.F(x,y|z)=xy. This parabolic choice implies that particles
Hence a unique numbéthe jamming limit or the coverage are more likely to deposit on the middle of an interval. We
is sufficient to characterize the resulting pattern created ifurther obtain the fractal dimension of the resulting pattern
the long-time limit. If a mixture contains a continuous distri- for model Il and compare it with the fractal dimension for
bution of sizes and is deposited sequentially such that onagodel I. Finally, in Sec. V we present a generalized version
deposited it is clamped to its position, then it is equivalent toof both models to describe correlated sequential deposition
our stochastic kinetic Cantor constructi¢h2]. Hence the  of an arbitrary number of particles where the degree of cor-
deposition of a mixture of particles will create a scale-relation is controlled by a parametgrand obtain the fractal
invariant pattern that does not reach the jamming limit sincejimension as a function ¢8. In Sec. VI we summarize the
there always exists a particle if there is an uncovered spaa@sults and discuss various points in order to reach a conclu-

during the process. sion.

Interesting questions arise from the present wdik.
What is the role of the fractal dimension during pattern for- Il. SEQUENTIAL DEPOSITION
mation?(ii) Is there any relation between fractal dimension OF AN ARBITRARY NUMBER OF PARTICLES

and degree of ordei(#ii ) What are the relevant parameters to

tune the degree of order and what are their physical mean- The connection between the one-dimensional model of
ing? The present work is an attempt to answer these quesar parking and the fragmentation processes was emphasized
tions. In Sec. Il we present the general equation to describby Ziff [13]. The fragmentation process can be thought of as
sequential deposition of an arbitrary number of particles. Irthe deposition of points on a line whose position depends on
Sec. Il we present model | describing random sequentiathe kinetic rule defined by the choice of kernels. Let
deposition of a mixture of different-sized particles at a ratey(x,t) be the concentration of empty or uncovered intervals
determined by the kerndt(x,y|z) =(x+y+2)?, where the of lengthx at timet. Then the rate equation for this concen-
exponenty determines only the deposition rate and does notration obeys the integro-differential equation

P t n—m n
l//f;t( )I—III(X,t)f H p(xj)F(Xn—m+1r s ,Xn|X1, s :Xn—m)ﬁ(x_z Xi)
=1 i=1

n—1 n—m

I1 dxidyj[ll p(x). (1)

=1

n n—-1
xi]:[l dxi+mf WY OF (X Xn_mats - - - Xno1]Xqs -« - ,xn_m)ﬁ(y—x—izl xi)

Here n=3,4,..., and m=23,..., so that n—m  creation from bigger spaces. Equatid) can also describe
=1,2,3, ... is the number of particles that are deposited ahe process of breaking an interval imapieces and throw-
each time step. Notice that te value in particular puts a Ing awayn—m pieces to create a stochastic fractal.

;tropg const_raint on .the depositing pa_rticles. . That IIl. MODEL |

is, if n—m=i and m<i+1, then the precisem will ) . . )
determine how many of the depositing particles must We first choose to consider the deposition of one particle
deposit next to each other so that they produce anly &t €ach time stepni=2). The rate equatioril) then be-

new empty spaces. The termp(x;) determines the size comes

of the depositing particles at each time step and¥(Xt) JX fX*Z o
F(Xn-mt1» ++ - Xn|X1s - - Xq_m) determines the rate and gt vy Op(z)dz 0 dyF(x=y=2zy|2)
the rules with whichx,, ... X,_, particles are to be depos-

ited to createn new empty spaces at each time step. The first f“ fyfx v
term on the right-hand side of E€L) represents the destruc- +2 X dyg(y.0 0 dzp2)F(xy—x-22).
tion of spaces of sizg and the second term represents their (2
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We choose the size of the depositing particles following the [

power-law form M(q,t)=f0<p(x,t)qux. (6)
ax? 1 x<l| We now multiply both sides of the rate equation Xfyand

p(x)= 0 x>l (3)  integrate over, thus obtaining a rate equation for the mo-
' ' ments

wherea>0 in order to ensure that(z) is normalized. This dM(a,t) rg+1)I'(a+1) 1

form of the parking distribution implies the deposition of a dt I'g+a+2) Ca+1l

mixture of particles with a continuous distribution of sizes.

We further choose the rate with which particles are deposited XM(g+a+y+1t). (7)

to be

This equation can be solved to find the solution for dtjtle

moment, the solution taking the form of a generalized hyper-
F (X2, X=X1=X|X1) =X”. (4)  geometric function with the numeratar+1 and denomina-

tor parameters. In order to understand the various physical

This choice of kernel implies that any point in the empty @spects of the problem within the simplest possible way, we
spaces is equally likely to be chosen for deposition by af!rst consider the case wher=1. In this case the rate equa-
particle whose size is determined by the choicepgk).  tion becomes
However, the empty spaces are picked at each time step yi2 |
where the particles are to be deposited, which is determined Ip(x,1) __X 2 Y(v—x)d 8

. Pp(x,0)+2 | P(y, )y’ (y—x)dy. (8)
by the exponent. The rate equation then becomes at 2 X

¢ aty+l | This class of models includes the one that is considered in
Y _ X (X t)+2f Py, Dy (y—x)*dy [12,14 when y=0. lterating the above equation to get all
at +1 ' X ’ the higher derivatives and substituting in the Taylor-series
expansion oM (q,t) aboutt=0 yields

for x<I. (5)

_ g-a g+a+3 gq+1 q+2 v
M(q.)=1%F y+2' y+2 Ty+2 y+2’ s,
Notice that settingr=0 or choosingp(z) = 6(z) describes 9

the random deposition of zero-sized particles on a line at a

ratex”*?, i.e., Eq.(5) becomes the standard binary fragmen-Where ,F5(a,b;c,d;x) is the generalized hypergeometric
tation proces§14]. We further notice that we can létbe  function [17,18 and a=(—3+/17)/2=0.561528 8. The
infinitely long without loss of generality, in which case the asymptotic expansion of the generalized hypergeometric
upper limit of the second term in E¢5) must be infinity. It  function immediately reveals that the moments show the
is well known that in one dimension the random parking ofpower-law behavior

cars of definite length is highly nonergodic in the sense that the (q—a)(y+2)

whole space is not visited by the depositing particles. How- M(q,t)~t' 7 (10

ever, in the case of the random deposition of a mixture of . .
particles with a power-law form of distribution sizes, the Notice that the exponent of the asymptotic expression for the

system retains an ergodic nature. In fact, the size of the paffoment is linear irg, which reveals the existence of simple
ticles to be deposited depends intrinsically on the size of th&caling.

available empty spaces. Consequently, the size of the depos-

ited particles becomes pointlike in the long-time limit and A. Explicit scaling solution

there is always an available particle to deposit whatever the | this section we attempt to show that in the long-time
size of the empty space in the system. The second term Qi the empty size distribution shows a power-law behav-
the right-hand side of Ed5) reveals that a& increases the jor. A linear power-law behavior of the moments reveals that
nonlocal character becomes more and more prominent, §fe system reaches a scaling or self-similar behavior does not
that it becomes increasingly difficult to solve the equation.gepend on the initial conditions for which one can invoke
Notice that the exponent does not play any role in deter- ynjversality. However, a closer look at the rate equation fur-
mining the degree of nonlocality. A closer look at H&)  ther reveals that only one of the two parameters has indepen-
reveals that fow + y+1<0 the deposition processes can bedent dimension, i.ex andt? have the same dimension where
fast enough such that subsequent generation of intervals hggs exponent is yet to be determined. That is, the dimension

a shorter lifetime than the previous generation. In otheryy  must be expressible in terms of the independent param-

words, smaller intervels are more likely to be picked forgiert or x alone. We can therefore define the dimensionless
deposition than larger intervals, which is not physically in- quantities as

teresting. Therefore, we restrict the deposition process to

only a+y+1>0. E=xt™1 or [=tx* (11)
We define the moment of the empty size distribution

function as and
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L P(x1) 5 Pt P(x,t) =x""D(tx?) (13
¢(Xt1/)—7z—- Pt =——7- (12

If scaling theory is obeyed, a plot @f(x,t)/t”/? against¢ or ~ for which the pattern that develops in the long-time limit is
a plot of ¢(x,t)/x~ ¢ against{ should fall on a single curve self-similar in space. The exponefitcan be obtained from
for any initial distribution. This reveals also that a self- the rate equation for the moments using the condition for
similar solution in time and space exists. However, we find itmoment that is time independent to gige=1+a. We now
convenient to consider the scaling ansatz substitute this ansatz into the rate equation to obtain

1 2 . (” 2 (=
—55(7*2‘”’Z®(§)—E§1’ZL TG () dp+ EL 7 720D (g)dy

tr+2-2)z Z(Z_Z)/Z‘D/(D (14
|
Demanding the scaling solution to exist, we find that J17-20-1  17+26+1
z=7y+2. The equation that we need to solve to find the O({)=2F( 1+ 2(7+2) 1= 20y+2)
scaling solution is Y Y
— L 1_ 0;1 — £ (18)
v+2'7 y+2' 2/

(o202 () +1§(7+2* NP (¢)
2 This is the explicit and exact scaling solution from which
one can find the largé-behavior,

2 0
- —0/(y+2) B
y+2L n q’(’))dﬂ <D(§)~e {/2_ (19)

The two scaling functions are related through

2 0
__gl/(y+2)J; 7]7(€+1)/(y+2)¢(7])d7]- (15) ¢(th/(y+2)):(th/('erZ))*G(I)((thl(y+2))y+2). (20)

y+2

Hence we obtain the scaling function for large £7*2 as

In order to eliminate the integral we differentiate this equa- B(E)~ gt (21)
tion twice with respect tQ to reduce it to the third-order '
differential equation One can recover the solution obtained 1] using an indi-
rect and different method from this general solution by set-
20+1\ ¢ P ting y=0. It is possible to obtain the scaling solution for a
2o ()+¢| | 3- )+—}q>"(g)+[(1——) higher value ofa, but asa increases the numerator and
v+2 2 v+2 denominator parameter of the generalized hypergeometric
9+1\ 3y+5-20 1 0 function become increasingly complicated. However, the
X|1- > + (Vi 2 D)+ > 1- P} knowledge ofz and # and a detailed survey reveals that it is
Y (y+2) Y possible to write the scaling solution in the largdimit for
0+1 2 } generala as
X|1-——=|— ——==|P({)=0. 16
,y_,’_ 2 (,y_’_ 2) (Z) ( ) ¢(§)~§7[1+a(a)]eiga+y+1/2, (22)
We can rescale the equation to obtain wherea(«) is the solution of the following equation far:
r(+l'a+1) 1 23
§2 B g 20+1 g 0 F(q+a+2) at+l’
TP (D+5]|3~ TSP+ |1 —= , S .
4 2 y+2) 2 y+2 We now write the empty size distribution for the long time
L 01y By+s—20¢) [ 6 limit as
~ 352 T2 2|2 @ T yt2 P(x,t) ~x @l (). (24)
6+1 4 That is, we can choose scalgg(x)=x"[**3()] depending
“ 352 22 ®({)=0. (17)  on the spatial variable for the empty size distribution func-

tion andtg(x)=x"(**7*1) for the temporal variable. There-
fore, in the new scale the properties of the empty size distri-
The solution of Eq(17) is given by the generalized hyper- bution function can be expressed in terms of one variable,
geometric function i.e.,
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TABLE |. Fractal dimensionD; of the stochastic fractals for F(x,y|z)=xy. (29
model |; the corresponding dimensionality for the Cantor set is
given in the parentheses. This particular choice of the deposition rate implies that all
the points along the chosen empty space are not equally
n likely to be deposited, although all the empty spaces compete
m 3 4 S on equal footing to be chosen where particles can be depos-
5 0.5615288(0.6309)  0.4348(1/2) 0.3723(0.4307) |ted._ That is, the rate depend_s on the size of the deposited
particles as well as on the size of the two smaller empty
3 1 0.7478(0.7925) 0.6295(0.6826) o o .
4 1 0.8315(0.8614) spaces created due to deposition. Substituting this into Eq.
c 1' ’ (2) with n=3 andm=2, we obtain the rate equation
AP(X,t) xat4
¢5t = (et 3)(ard) YOV
1/,(x)~x7[1+a(“)]et/t0_ (25)
[
a+2
This implies thaty/ ¢ andt/t, are self-similar coordinates. +2Lx(y—x) g(y,t)ydy  for x<I. (30
B. Statistically self-similar pattern formation Notice thate= —1 describes the fragmentation process with

the fragmentation kerné¥(x,y)=xy [19]. Also notice that

The existence of scaling shows that the pattern created e ) S
) T . e intensity of the nonlocal character is higher than the pre-
the long-time limit becomes scale-free, i.e., the whole can be.

) . ; vious model, for which we find it increasingly difficult to
obtained from the parts by a suitable change in scale. Esseﬂhd the scaling solution. Nevertheless, for our purpose it is
tially, this implies that we can invoke the idea of a fractal 9 ' ! purp

dimension: a dimension that uniquely determines the geo enough to know that scaling exists. Substituting the defini-

etry of the object. We now use the usual box counting ion of the moment into the above equation yields

method to determine the fractal dimension. We define the dM(n,t) [T(n+2)T(a+5)

size of the segments to be - _
dt I'(n+a+5)

_ M@y ) 26 (31)
M(O,t) We find that the asymptotic behavior of the moment can

provide some of the interesting features of the system.
and we count the number of such segments needed to COVRlgnce, from now on we are only interested in finding the
the whole set of points to determine the fractal dimension. Ifractal dimension of the system that can uniquely character-
the limit 6—0, we find that the number of segments jze the structure. Following a similar procedure as we have
(N(9)) required to cover the set created by Ef).scales as  gone before, we find that the number of segments needed to
cover the whole set created scales as

1{M(n+ a+4p).

(N(8))~ & Pile), (27)
(N(8))~ o6~ Prle), (32
whereD;(«) is the real and positive root of the polynomial ) .
equation inq obtained from Eq(7). Consequentlyp; is  WhereD¢(«), as before, can be obtained to satisfy
found to obey I'(Dy(a)+2)T (a+5)
I(Di(a)+ Dl (a+1) 1 - I'(Di(a)+a+5)
IF'Dia)+a+2)  a+l (28)

=1. (33

HereD¢(«) is the fractal dimension of the pattern formed by
this model. It is clear that the order of the polynomial equa-
Thus a single scaling exponedt(a) completely character- tjon is determined by ther value. Therefore, the fractal di-
izes the structures of the objects, which is reminiscent of th‘?nensioan(a) is different for differenta values. Compar-
jamming limit. Note that fractal dimensioD(a) does not jng this model with the previous model, we find that the
depend on the exponent so it is independent of the rate at fractal dimension for this model is always higher than that
which particles are deposited, provided>—(a+1). In  for the previous model for each correspondingalue. Also,
Table | we give a spectrum of fractal dimensions for differ-ijn poth cases fractal dimensions appear to decrease mono-
ent values ofx for model I. This shows that as increases tonjcally asa increases. This is a feature that we shall dis-

the fractal dimension decreases. Later, we also attempt t@uss in more detail later. We intend to determine if there

give a physical interpretation of the exponent exists any relation between the degree of order in the pattern
and the fractal dimension. In order to do this we consider a
V. MODEL II further generalization of the two models we discussed.

We shall now consider another model that follows the
same parking distribution with a trivial shift of one in the
exponente, i.e., p(z)~(«+1)z% but different deposition We now turn to the more general model in which, at each
rate. The deposition rate of this model is time step, more than one particle will attempt to be depos-

V. MODEL Il
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ited. We choose the parking distribution and deposition ratefength of the depositing particles on the average increases
that are of the same functional form, i.e., we choose thevith respect to that of the corresponding lowewalue. For
particle size distribution for deposition to take the form further support we concentrate on the fractal dimension of
the resulting pattern.
pP(x)=9g(x;) for x=I, (34) Since the moments of the empty space distribution func-
tion can characterize the fragmenting systems more easily

and the deposition rate than the empty space distribution function itself, we now

n consider the behavior of the moment only. gy) =y?, the
F(Xnemats - XolXes oo Xoem = 1 9(x)). time evolution of the moments can be obtained using(Ex.
i=n—-m+1
(35 dM(q,t ml'(q+B+1
O(Iq )=[F(,8+1)]”‘1<r (a+pB 1)
Substituting Egs(34) and (35) into Eq. (1), we obtain the t @+n(B+1))
rate equation T(B+1)
- |M(@+n(B+1)—11). (41
S | F@riy M@rnB+H-10. @y
pr =—Fn(X)z!f(x,t)+mg(X)f p(y,t)
x This equation can be solved for the momeM¢q,t), the
XE. (v—x)dy f <l 36 solution again taking the form of a generalized hypergeomet-
n-a(y=x)dy for (36) ric function with numeratorrf—1)(8+1) and denominator
where the functiongF,(x),n=2,3, ...} are defined by parameters. We now consider the scaling behavior of these

models that define the scaling exponérandz and give the
" long-time dependence of the moment aki(q,t)
Fn(X)Zf 5()(_-21 Xi)H g(xi)dx; . (87  ~t#¢=a-1) We can immediately find for all m, n, and«
- because in the long-time limit the moments behave as
Equation(36) is equivalent to the dynamic system of break-
ing an interval inton pieces and throwing awag—m of
them at each time std@0]. It is straightforward to show that

M(q,t)~A(a)t 9. (42

Substituting this into the rate equation for the moment yields
X a difference equation
Fn(X)=f 9(Y)Fn-1(x—y)dy (38)
0 b(g+n(B+1)—1)=b(q)+1. (43
for n=3 and Iterating this and using thg value for which the moment
becomes time independent, we find

X
Fz(X)=f g(y)(x—y)d. (39
0 q-q*
| _ | b(a)= - (44)
We further specify our model by choosimgy) =y#, with n(p+1)
B treated as an external tunable parameter. Wign=y” This ai
we can obtain the functiofiF ,(x),n=2,3, ...} from Egs. IS gives
(38) and(39) as 1
7=——— 45
LT s n(B+D -1 49

Fn(X)= (40)

Fm(+1)" |
andq(B,m,n) related tod by 6=D¢+ 1 and can be obtained

It is interesting to note that if we sg8=0, m=2, and from Eq.(41) and satisfies

n=a+2 in Eq.(36), we get the same rate equation for the

empty size distribution as described by moddlEq. (5)] ml(g+pg+1)  I'(B+1)

with y=0. It reveals that we can give an alternative inter- I'(q+n(B+1)) TI'(n(B+1))

pretation of model I. That is, at each time step an interval is

broken intoa+ 2 random pieces and of them are removed In particular, this model can be described as a correlated

from the system. Alternatively, we can say that the exponensequential deposition of particles on a substrate where the

« determines the number of particles to be deposited at eaategree of correlation is determined by the expongnt

(46)

time step on an interval. However, far>1 them value put For the the power-law form of the the parking distribution
a strong constraint on the depositing particles. That is, théunction this model describes the deposition of
process describes sequential depositionvgparticles con- n—m=1,2,3, ... particles and creates=2,3,... new

secutively as if they were a single particle. Similarly, if we empty spaces, respectively. ii-m=p and m<p-+1 then

set =1, m=2, andn=(a+5)/2, we get the same rate them value determines how many of them deposit consecu-
equation as described by model Il. This reveals that at eactively. This deposition phenomenon can equivalently be in-
time step @+ 1)/2 are deposited consecutively. These twoterpreted as cutting an interval into pieces and removing
features help us to understand the physical role played by the—m of the parts created and repeating the process with the
parking distribution exponent. That is, ase increases the remainingm pieces thus resembling the concept of classic
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Cantor set. The fact that the size and position of the particles TABLE II. Fractal dimensionD; of stochastic fractals for
to be removed are chosen stochastically, unlike in the Cantan=2 andn=3 for increasing3 values.

set where there are no kinetics, is irrelevant because we are
considering the scaling regime—«. Since this process is B Dy
repeatedd infinitum it forms stochastic fractals with dimen- 1
sion 0<Ds=<1. As before, we use the box counting method

2

NI

by defining a characteristic lengthso that we can count the 0 0.5616288
number of segments required to cover the set wber0, 3 0.5841
which determines the properties of the resulting set and 1 0.5956
scales as 2 0.6073
o0 0.6309

(N(8))~87P1, 47)
Thus we find that the Hausdorff-Besicovitch dimension in VI. SUMMARY AND DISCUSSION
this case is equal tq*. We still havez given by Eq.(45),
but now the value off* (and hence? andDy) is nontrivial. In this work we presented a number of interesting results

This class of fractals includes that considered @], with  relating to random and correlated sequential deposition of a
n=3, m=2, and 8=0. In the limit 35—~ we can use Mixture of particles of finite sizes. We found that the pattern

Stirling’s formula and the asymptotic formula created is statistically scale invariant. We also attempted to
show the relationship between the fractal dimension and the
I'(az+b)~\2me 3% az)3?"P~12 (48)  degree of order in the resulting pattern created in the long-

time limit. In Table | we presented some values of the fractal
in Eq. (46) to find thatg* (=Ds)—InmInn. This coincides dimension as a function ofn and n for model | (or for
with the fractal dimension of the classic Cantor set. That isg=0 using model Il) with «=1. The corresponding fractal
in the limit 8—o the standard deviation of the size of the dimension for the Cantor set are given in parentheses. In
pieces created tends to zero. This is easily verified by calcuFable Il we give the fractal dimension fon=2 andn=3
lating the mean and standard deviations fr&{x;}. This  for some different values g6. Table Il and a more numeri-
particular finding implies that in this limiF,(x) behaves cal survey confirm that the fractal dimension increases

approximately as monotonically a8 increases. Moreover, the fractal dimen-
sion appears to decrease rasncreases for a givem and
i idech—m>0. In Table Il we compare the
Fn(x =x"f (X1 —X3)dx f S(X1—X)dXy: - - vice versa, provl .
n(X) (X1=X3)dx | 80Xy =Xp)d%p fractal dimensions for different values affor models | and

Il. This table and further details of the numerical survey
dx. - (49) confirm that_for the same _value,_ model Il creates a pattern
n-1 that has a higher fractal dimension than that for model I. We
further notice that the first row of Table Il for fractal dimen-

n-1
xl—(x—z Xi
=1

xf5

Substituting this into Eq(36), we obtain sion with m=2 is exactly the same as in Table Il with
Hxt) \ B=0 anda=1,2,3. Similarly, the fractal dimension obtained
(X, X from model Ill for B=1, m=2, andn=(«+5)/2 would be
[ — A 1 1
at n YD+ mnx) X, (50 the same as that obtained from model Il for the correspond-
ing (a+1)/2=1,2,.... This further shows that a& in-

This describes a model that splits an interval intequal  creases the length of the deposited particles on the average
pieces and keeps oniy of them. Substituting the definition increases with respect to that of a corresponding average

of the moment(6) into Eq.(50), we obtain length for a lowera value, which appears to be consistent
with our detailed survey that reveals that fractal dimension
dM(gt) | m 1 M(q+\.1) (51)  decreases monotonically as increases, and ag—o the
dt nd*t n arAb-. fractal dimensionD;— 0. These observations immediately

) ) confirm that the exponent does not play any role in creat-
The solution of Eq(51) is

TABLE lll. Fractal dimensionD; for 8=0,1 for different val-
M (g, )~ t= (@00 (52 clorp

ues ofa.
and immediately reveals th&t;=Inm/Inn, as in the classic o £=0 B=1
Cantor set with kinetic exponentXL/In the limit 3+ 1—0
we can analyze Eq46) to show thatg* (andDy) tends to 1 0.5616 0.5956
zero like y(m,n)(B+1), where y(m,n)=n(m-—1)/ 2 0.4348 0.5183
(n—m). Consequently, we see that for allandn there is a 3 0.3723 0.466542
spectrum of fractal dimensions betwegdt——1, when 4 0.33405 0.429121
D;—0, andB—«, whenD;— InmvInn. This is a very strik- 5 0.30784 0.400614
ing result. It implies that in the limi{f8—oc particles are 6 0.288505 0.37805
deposited only in the center of the empty space and produce 7 0.27351 0.35966

strictly self-similar patterns.
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ing the ordered pattern since the fractal dimension does natonclude that the fractal dimension must increase with in-
reach a constant nonzero valuea@as>«. creasing order and reaches a maximum value when the pat-
In a recent Lettef21], Brilliantov et al. studied the ran- tern is in perfect order. In this work we show that the expo-
dom sequential adsorption of a mixture of particles with anenta does not play any role in creating an ordered pattern.
continuous distribution of sizes determined by the power-lawnstead, it implies that the length of the deposited particle at
form [Eq. (3)]. They reported that the pattern created in the€ach time step increases on average asithalue increases.
long-time becomes more and more orderedaamcreases In order to create an ordered pattern we reveal that one
and in two dimensions it reaches the Apollonian packing inneeds to choose(x,y|z)~ (xy)” andp(z)~z*. This model
the limit «—o when the depositing particles are a finite for 8#0 describes that at each event an empty space is
mixture of disks. It is important to notice that the one- chosen randomly. However, once this decision has been
dimensional analog of this model is the deposition of a mix-made, particles are more likely to deposit at the center of the
ture of rods. Evidently, one expects the fractal dimension t&&Mpty space than on either side of it. Of course, the tendency
coincide with the classic Cantor set when the pattern beto deposit at the center increasesgamcreases. In fact, our
comes a perfectly ordered pattern. In Réfl] an exact ex- analysis further supports that the fractal dimension increases
pression for the fractal dimension is also given for the genWith the degree of increasing order and reaches its maximum
erald dimension. It is also clear that the Apollonian packing Value(a nonzero constanin the perfectly ordered pattern, as
is a nonrandom or strictly self-similar fractal-like Sierpinsky it does in the classic Cantor set or in the Seirpinsky gasket.
gasket difference that lies only in the geometry of the deposKrapivsky and Ben-Naim reported ji2] that the dimension
iting particles. The observation that the pattern become8f the random fractal is always smaller than its deterministic
more and more ordered should be true for any dimension angPunterpart. If we look at the situation for the stochastic
for any geometry including= 1. That is, in order to support Cantor set, we find that in order to get the deterministic
the result that in the limie— o the pattern becomes more classic set (Ininn) « alone does not play any role in cre-
and more ordered, the fractal dimension must reach a corting any ordered pattern. Instead, one has to choose
stant nonzero value in that limit. In particular, as-« the ~ F(X,y|2) to be the same power-law form as for the parking
fractal dimension must reach the value In2/In3, which is thedistribution p(z), e.g., model IIl. In this case only thg
one-dimensional analog of both the Apollonian packing and/alue determines the degree of tendency to place the par-
Sierpinsky gasket. In one dimension we can solve the moddicles in the center of the empty space and in the limit
exactly, which corresponds to our model I. The exact enuP— > particles are always placed exactly at the center of the
meration of the fractal dimension and detailed numerical surempty space. We can quantify the increasing regularity of
vey reveals thaD;—0 asa— instead of reaching a con- the resulting pattern created in the long-time limit by intro-
stant nonzero value. Therefore, the analysis we give in thigucing the concept of entropy production that characterizes
work contradicts the result reported [ig1]. More recently, the degree of order as
deposition of a finite mixture of rectangles in a two-
dimensional substrate is studied in REZ2]. Although in S:_;k P(CWINp(Cy). (53

this work particles are allowed to deposit on only one of theSince in the— oo limit there is only one definite configu-

Iour co][nders, tth mo?}el in Ref21] frete:jln? tfse ggnterlc fead- . ration, we haveg(C,) =1, which contributes to the entropy.
ures of deposition phenomena of a definite mixture and in 't + e can define

particular is very close to the model we consider in this
work. The work in Ref[22,23 is the stochastic counterpart p(C) = L (54)

of the deterministic Sierpinsky carpet or Cantor gagiét Inm/Inn’’

which are strictly self-similar. In this deterministic case, thewhere eactD; corresponds to one definite configuration. We
initiator is a square and the generator subdivides at each stéjpd thatS increases ag decreases towards zero. That is, as
into b? equal squaresy of which are removed according to 8 decreases the number of possible configurations increases.
a fixed rule. After an infinite number of iterations the result-In this work, we generalize the conventional random sequen-
ing set can be seen as a generalization of the Cantor set @l absorption where the position of a particle to be depos-
two dimensions that has the fractal dimensionited in the empty space is chosen randomly and the degree of
D;=In(b*—p)/inb. However, in the case of its stochastic randomness is determined by the position-dependent deposi-
counterpart we have shown that the system does not reacion rate. That is, the position where the particle is to be
simple scaling; instead the system shows multiscaling, a replaced is chosen by the size of the empty space being de-
sult that we believe to be true for the deposition of a finitestroyed and by the size of the empty spaces created on either
mixture of particles of any geometry in more than one di-side. As a prospect of future work one can choose
mension. That is, the pattern created in the long-time limitp(z)=§(x—1) and F(x,y|z) to be position dependent.
has a global scaling exponebt and a local scaling expo- Studying random sequential absorption with these choices,
nent known ag(q), whereq is the Holder exponent. That is, the system obviously will reach a jamming limit, but how it
the pattern can be divided into a subset that scales with difvaries with the degree of order can be of greater physical
ferent fractal dimension, a phenomena called multifractalinterest.
ity[2,15]. However, in the case of a strictly self-similar pat-

tern the system reaches a simple scaling behavior. The study
further revealed that the global exponent or the fractal di-
mension of the random fractal is always lower than its cor- The author is indebted to G. J. Rodgers for numerous
responding strictly self-similar counterpart. Therefore, wediscussions and valuable remarks during this work.
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