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Fractal dimension and degree of order in sequential deposition of mixture

M. K. Hassan*
Department of Physics, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

~Received 9 January 1997!

We present a number of models describing the sequential deposition of a mixture of particles whose size
distribution is determined by the power lawp(x);axa21, x< l . We explicitly obtain the scaling function in
the case of random sequential adsorption and show that the pattern created in the long-time limit becomes scale
invariant. This pattern can be described by a unique exponent, the fractal dimension. In addition, we introduce
an external tuning parameterb to describe the correlated sequential deposition of a mixture of particles where
the degree of correlation is determined byb, while b50 corresponds to the random sequential deposition of
a mixture. We show that the fractal dimension of the resulting pattern increases asb increases and reaches a
constant nonzero value in the limitb→` when the pattern becomes perfectly ordered or nonrandom fractals.
@S1063-651X~97!09905-4#
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I. INTRODUCTION

The formation of stochastic fractals is an active field
research both theoretically and experimentally. Yet
mechanism by which nature creates fractals and the rela
ship between the degree of order and the fractal dimensio
poorly understood. The history of describing natural obje
by geometry is as old as the science itself. However, tra
tionally Euclidean lines, squares, rectangles, circles, sphe
etc., have been the basis of our intuitive understanding of
geometry of almost all natural objects. But nature is not
stricted to Euclidean space. Instead, most of the natural
jects we see around us are so complex in shape that con
tional Euclidean space is not sufficient to describe them
appears to be essential to invoke the concept of fractal
ometry to characterize such complex objects quantitativ
It further enables us to search for symmetry and order e
in disordered, complex systems@1,2#. The importance of the
discovery of fractals can hardly be exaggerated. Yet ther
no neat and complete definition of a fractal. Instead one
sociates a fractal with a shape made of parts similar to
whole in some way. It is typically quantified by a noninteg
exponent called the fractal dimension that can uniquely ch
acterize the structure. This definition immediately confir
the existence of scale invariance, that is, objects look
same on different scales of observation. To understand f
tals, their physical origin, and how they appear in nature
need to be able to model them theoretically. This forms p
of our motivation of the present work.

The simplest way to construct a fractal is to determinis
cally repeat a given operation. The construction of a class
Cantor set is a simple textbook example of such a fracta
is created by fragmenting a line inton equal pieces and
removingn2m of the parts created and repeating the p
cess with them remaining pieces@1#. This process is re-
peatedad infinitum. However, this construction is too artifi
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cial as it differs in two ways from the fractals that occur
nature. It does not have any kinetics and it does not have
randomness.

In this work we introduce a stochastic process allowing
number of intrinsic tuning parameters that may be cons
ered as a natural kinetic counterpart of the classical Ca
construction and is a potential candidate in order to und
stand the essential governing rule of creating complex
jects. These intrinsic tuning parameters are used to determ
the degree of randomness and the rate at which a given
eration is repeated to create a fractal. The interval is cho
for breaking stochastically, and once an interval is cho
the cuts are placed randomly on the interval, while the
gree of randomness is determined by the precise choic
deposition kernels. Thus, starting with an infinitely long i
terval, what remains in the long-time limit is an infinite num
ber of points scattered over the intervals. The properties
these points create a set that appears to be statistically
similar and is characterized by a fractal dimension.

The construction of stochastic fractals we consider is
at all pedagogical. One immediate and potential applicat
of the stochastic fractal is the sequential deposition of a m
ture of particles with a continuous distribution of sizes. Ho
ever, the model we consider in this work mimics the co
figuration when objects once inserted are clamped in th
spatial positions for which nonequilibrium configurations a
generated. The random sequential absorption processes
been found to describe many experimental systems, nam
the adhesion of proteins and colloidal particles to unifo
surfaces@3,4#, the reaction of various polymer chain system
such as methyl vinyl ketone@5#, and many fields in chemis
try and physics. Although the process is conceptually sim
understanding its kinetics analytically is a challenging pro
lem ~see an excellent review article@6#!. The deposition of
particles of definite sizes in one dimension has been so
exactly and analytically in both continuous and discre
cases. The continuous version of this model is known as
random car parking problem. Recently, the deposition o
mixture of a small number of definite-sized particles h
been considered@7–9#. In Ref. @10# Bartelt and Privman
solved exactly the one-dimensional lattice version for de

ce
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55 5303FRACTAL DIMENSION AND DEGREE OF ORDER IN . . .
sition of a mixture when it is composed of fixed-size a
pointlike particles. These studies reveal that if the mixtu
contains a small number of different sizes then the vari
geometric kinetic characteristics are primarily determined
the smallest size. From the experimental point of view,
deposition kinetics of well-defined mixtures of differe
types of particles is of great importance. It is well known th
if objects are of definite size and once deposited are clam
in their positions, nonequilibrium configurations are crea
with a strong nonergodic and non-Markovian nature@11#. In
this case, the resulting system does not produce a sc
invariant pattern. Instead, it reaches a jamming limit whe
is impossible to place further objects without overlappin
Hence a unique number~the jamming limit or the coverage!
is sufficient to characterize the resulting pattern created
the long-time limit. If a mixture contains a continuous dist
bution of sizes and is deposited sequentially such that o
deposited it is clamped to its position, then it is equivalen
our stochastic kinetic Cantor construction@12#. Hence the
deposition of a mixture of particles will create a sca
invariant pattern that does not reach the jamming limit sin
there always exists a particle if there is an uncovered sp
during the process.

Interesting questions arise from the present work.~i!
What is the role of the fractal dimension during pattern f
mation?~ii ! Is there any relation between fractal dimensi
and degree of order?~iii ! What are the relevant parameters
tune the degree of order and what are their physical me
ing? The present work is an attempt to answer these q
tions. In Sec. II we present the general equation to desc
sequential deposition of an arbitrary number of particles
Sec. III we present model I describing random sequen
deposition of a mixture of different-sized particles at a r
determined by the kernelF(x,yuz)5(x1y1z)g, where the
exponentg determines only the deposition rate and does
a
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play any role in determing the degree of randomness.
kernelF(x,yuz) is defined as the rate with which an interv
(x1y1z) is destroyed by depositing a particle of sizez,
creating two new intervalsx andy. The parking distribution
function p(z) is the probability of attempting to deposit
particle of sizez. The deposition of a mixture of different
sized particles is achieved by choosing ap(z) power-law
form of parking distribution function with respect toz. We
obtain an explicit scaling solution and show that the result
pattern in the long-time limit is scale invariant in both tim
and space. In Sec. IV we consider correlated sequen
deposition of a mixture of particles~model II! by choosing
F(x,yuz)5xy. This parabolic choice implies that particle
are more likely to deposit on the middle of an interval. W
further obtain the fractal dimension of the resulting patte
for model II and compare it with the fractal dimension f
model I. Finally, in Sec. V we present a generalized vers
of both models to describe correlated sequential deposi
of an arbitrary number of particles where the degree of c
relation is controlled by a parameterb and obtain the fracta
dimension as a function ofb. In Sec. VI we summarize the
results and discuss various points in order to reach a con
sion.

II. SEQUENTIAL DEPOSITION
OF AN ARBITRARY NUMBER OF PARTICLES

The connection between the one-dimensional mode
car parking and the fragmentation processes was empha
by Ziff @13#. The fragmentation process can be thought of
the deposition of points on a line whose position depends
the kinetic rule defined by the choice of kernels. L
c(x,t) be the concentration of empty or uncovered interv
of lengthx at timet. Then the rate equation for this conce
tration obeys the integro-differential equation
]c~x,t !

]t
52c~x,t !E )

j51

n2m

p~xj !F~xn2m11 , . . . ,xnux1 , . . . ,xn2m!dS x2(
i51

n

xi D
3)

i51

n

dxi1mE c~y,t !F~x,xn2m11 , . . . ,xn21ux1 , . . . ,xn2m!dS y2x2 (
i51

n21

xi D )
i51

n21

dxidy)
j51

n2m

p~xj !. ~1!
icle
Here n53,4, . . . , and m52,3, . . . , so that n2m
51,2,3, . . . is the number of particles that are deposited
each time step. Notice that them value in particular puts a
strong constraint on the depositing particles. Th
is, if n2m5 i and m, i11, then the precisem will
determine how many of the depositing particles m
deposit next to each other so that they produce onlym
new empty spaces. The termp(xi) determines the size
of the depositing particles at each time step a
F(xn2m11 , . . . ,xnux1 , . . . ,xn2m) determines the rate an
the rules with whichx1 , . . . ,xn2m particles are to be depos
ited to createm new empty spaces at each time step. The fi
term on the right-hand side of Eq.~1! represents the destruc
tion of spaces of sizex and the second term represents th
at

t

t

d

t

r

creation from bigger spaces. Equation~1! can also describe
the process of breaking an interval inton pieces and throw-
ing awayn2m pieces to create a stochastic fractal.

III. MODEL I

We first choose to consider the deposition of one part
at each time step (m52). The rate equation~1! then be-
comes
]c~x,t !

]t
52c~x,t !E

0

x

p~z!dzE
0

x2z

dyF~x2y2z,yuz!

12E
x

`

dyc~y,t !E
0

y2x

dzp~z!F~x,y2x2zuz!.

~2!
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We choose the size of the depositing particles following th
power-law form

p~x!5H axa21, x< l

0, x. l ,
~3!

wherea.0 in order to ensure thatp(z) is normalized. This
form of the parking distribution implies the deposition of a
mixture of particles with a continuous distribution of sizes
We further choose the rate with which particles are deposite
to be

F~x2 ,x2x12x2ux1!5xg. ~4!

This choice of kernel implies that any point in the empty
spaces is equally likely to be chosen for deposition by
particle whose size is determined by the choice ofp(x).
However, the empty spaces are picked at each time st
where the particles are to be deposited, which is determin
by the exponentg. The rate equation then becomes

]c~x,t !

]t
52

xa1g11

a11
c~x,t !12E

x

l

c~y,t !yg~y2x!ady

for x< l . ~5!

Notice that settinga50 or choosingp(z)5d(z) describes
the random deposition of zero-sized particles on a line at
ratexg11, i.e., Eq.~5! becomes the standard binary fragmen
tation process@14#. We further notice that we can letl be
infinitely long without loss of generality, in which case the
upper limit of the second term in Eq.~5! must be infinity. It
is well known that in one dimension the random parking o
cars of definite length is highly nonergodic in the sense
whole space is not visited by the depositing particles. How
ever, in the case of the random deposition of a mixture o
particles with a power-law form of distribution sizes, the
system retains an ergodic nature. In fact, the size of the pa
ticles to be deposited depends intrinsically on the size of th
available empty spaces. Consequently, the size of the dep
ited particles becomes pointlike in the long-time limit and
there is always an available particle to deposit whatever th
size of the empty space in the system. The second term
the right-hand side of Eq.~5! reveals that asa increases the
nonlocal character becomes more and more prominent,
that it becomes increasingly difficult to solve the equation
Notice that the exponentg does not play any role in deter-
mining the degree of nonlocality. A closer look at Eq.~5!
reveals that fora1g11,0 the deposition processes can be
fast enough such that subsequent generation of intervals h
a shorter lifetime than the previous generation. In othe
words, smaller intervels are more likely to be picked fo
deposition than larger intervals, which is not physically in
teresting. Therefore, we restrict the deposition process
only a1g11.0.

We define the moment of the empty size distribution
function as
e
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M ~q,t !5E
0

l

c~x,t !xqdx. ~6!

We now multiply both sides of the rate equation byxq and
integrate overx, thus obtaining a rate equation for the m
ments

dM~q,t !

dt
5S 2G~q11!G~a11!

G~q1a12!
2

1

a11D
3M ~q1a1g11,t !. ~7!

This equation can be solved to find the solution for theqth
moment, the solution taking the form of a generalized hyp
geometric function with the numeratora11 and denomina-
tor parameters. In order to understand the various phys
aspects of the problem within the simplest possible way,
first consider the case whena51. In this case the rate equa
tion becomes

]c~x,t !

]t
52

xg12

2
c~x,t !12E

x

l

c~y,t !yg~y2x!dy. ~8!

This class of models includes the one that is considere
@12,16# when g50. Iterating the above equation to get a
the higher derivatives and substituting in the Taylor-ser
expansion ofM (q,t) aboutt50 yields

M ~q,t !5 l q2F2S q2a

g12
,
q1a13

g12
;
q11

g12
,
q12

g12
;2t l g12D ,

~9!

where 2F2(a,b;c,d;x) is the generalized hypergeometr
function @17,18# and a5(231A17)/250.561 528 8. The
asymptotic expansion of the generalized hypergeome
function immediately reveals that the moments show
power-law behavior

M ~q,t !;t ~q2a!/~g12!. ~10!

Notice that the exponent of the asymptotic expression for
moment is linear inq, which reveals the existence of simp
scaling.

A. Explicit scaling solution

In this section we attempt to show that in the long-tim
limit the empty size distribution shows a power-law beha
ior. A linear power-law behavior of the moments reveals th
the system reaches a scaling or self-similar behavior does
depend on the initial conditions for which one can invo
universality. However, a closer look at the rate equation f
ther reveals that only one of the two parameters has inde
dent dimension, i.e.,x andtz have the same dimension whe
the exponentz is yet to be determined. That is, the dimensi
of c must be expressible in terms of the independent par
eter t or x alone. We can therefore define the dimensionl
quantities as

j5xt21/z or z5txz ~11!

and
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f~xt1/z!5
c~x,t !

tn/z
, F~ txz!5

c~x,t !

x2u . ~12!

If scaling theory is obeyed, a plot ofc(x,t)/tn/z againstj or
a plot ofc(x,t)/x2u againstz should fall on a single curve
for any initial distribution. This reveals also that a se
similar solution in time and space exists. However, we fin
convenient to consider the scaling ansatz
a
he

a
r

r-
it

c~x,t !5x2uF~ txz! ~13!

for which the pattern that develops in the long-time limit
self-similar in space. The exponentu can be obtained from
the rate equation for the moments using the condition
moment that is time independent to giveu511a. We now
substitute this ansatz into the rate equation to obtain
t ~g122z!/z5

2
1

2
z~g122u!/zF~z!2

2

z
z1/zE

z

`

h~g112z2u!/zF~h!dh1
2

zEz

`

h~g122z2u!/zF~h!dh

z~z22!/zF8~z!
. ~14!
h

et-
a
d
tric
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e
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ble,
Demanding the scaling solution to exist, we find th
z5g12. The equation that we need to solve to find t
scaling solution is

z~g122u!/~g12!F8~z!1
1

2
z~g122u!/~g12!F~z!

5
2

g12Ez

`

h2u/~g12!F~h!dh

2
2

g12
z1/~g12!E

z

`

h2~u11!/~g12!F~h!dh. ~15!

In order to eliminate the integral we differentiate this equ
tion twice with respect toz to reduce it to the third-orde
differential equation

z2F-~z!1zF S 32
2u11

g12 D1
z

2GF9~z!1F S 12
u

g12D
3S 12

u11

g12D1
3g1522u

2~g12!
z GF8~z!1F12S 12

u

g12D
3S 12

u11

g12D2
2

~g12!2GF~z!50. ~16!

We can rescale the equation to obtain

z2

4
F-~z!1

z

2F S 32
2u11

g12 D1
z

2GF9~z!1F S 12
u

g12D
3S 12

u11

g12D1
3g1522u

2~g12!

z

2GF8~z!1F S 12
u

g12D
3S 12

u11

g12D2
4

~g12!2GF~z!50. ~17!

The solution of Eq.~17! is given by the generalized hype
geometric function
t

-

F~z!52F2S 11
A1722u21

2~g12!
,12

A1712u11

2~g12!
;1

2
u

g12
,12

u11

g12
;2

z

2D . ~18!

This is the explicit and exact scaling solution from whic
one can find the large-z behavior,

F~z!;e2z/2. ~19!

The two scaling functions are related through

f~xt1/~g12!!5~xt1/~g12!!2uF„~xt1/~g12!!g12
…. ~20!

Hence we obtain the scaling function for largez5jg12 as

f~j!;j2~11a!e2jg12/2. ~21!

One can recover the solution obtained in@16# using an indi-
rect and different method from this general solution by s
ting g50. It is possible to obtain the scaling solution for
higher value ofa, but asa increases the numerator an
denominator parameter of the generalized hypergeome
function become increasingly complicated. However,
knowledge ofz andu and a detailed survey reveals that it
possible to write the scaling solution in the large-j limit for
generala as

f~j!;j2[11a~a!]e2ja1g11/2, ~22!

wherea(a) is the solution of the following equation forq:

2
G~q11!G~a11!

G~q1a12!
5

1

a11
. ~23!

We now write the empty size distribution for the long tim
limit as

c~x,t !;x2@11a~a!#F~z!. ~24!

That is, we can choose scalesc0(x)5x2[11a(a)] depending
on the spatial variable for the empty size distribution fun
tion andt0(x)5x2(a1g11) for the temporal variable. There
fore, in the new scale the properties of the empty size dis
bution function can be expressed in terms of one varia
i.e.,
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5306 55M. K. HASSAN
c~x!;x2[11a~a!]et/t0. ~25!

This implies thatc/c0 and t/t0 are self-similar coordinates

B. Statistically self-similar pattern formation

The existence of scaling shows that the pattern create
the long-time limit becomes scale-free, i.e., the whole can
obtained from the parts by a suitable change in scale. Es
tially, this implies that we can invoke the idea of a frac
dimension: a dimension that uniquely determines the ge
etry of the object. We now use the usual box count
method to determine the fractal dimension. We define
size of the segments to be

d5
M ~1,t !

M ~0,t !
;t21/~g12! ~26!

and we count the number of such segments needed to c
the whole set of points to determine the fractal dimension
the limit d→0, we find that the number of segmen
^N(d)& required to cover the set created by Eq.~5! scales as

^N~d!&;d2Df ~a!, ~27!

whereDf(a) is the real and positive root of the polynomi
equation inq obtained from Eq.~7!. Consequently,Df is
found to obey

2
G„Df~a!11…G~a11!

G„Df~a!1a12…
5

1

a11
~28!

Thus a single scaling exponentDf(a) completely character
izes the structures of the objects, which is reminiscent of
jamming limit. Note that fractal dimensionDf(a) does not
depend on the exponentg, so it is independent of the rate a
which particles are deposited, providedg.2(a11). In
Table I we give a spectrum of fractal dimensions for diffe
ent values ofa for model I. This shows that asa increases
the fractal dimension decreases. Later, we also attemp
give a physical interpretation of the exponenta.

IV. MODEL II

We shall now consider another model that follows t
same parking distribution with a trivial shift of one in th
exponenta, i.e., p(z);(a11)za, but different deposition
rate. The deposition rate of this model is

TABLE I. Fractal dimensionDf of the stochastic fractals fo
model I; the corresponding dimensionality for the Cantor se
given in the parentheses.

n
m 3 4 5

2 0.5615288(0.6309) 0.4348(1/2) 0.3723(0.4307
3 1 0.7478(0.7925) 0.6295(0.6826)
4 1 0.8315(0.8614)
5 1
in
e
n-
l
-

g
e

ver
n

e

to

F~x,yuz!5xy. ~29!

This particular choice of the deposition rate implies that
the points along the chosen empty space are not equ
likely to be deposited, although all the empty spaces comp
on equal footing to be chosen where particles can be de
ited. That is, the rate depends on the size of the depos
particles as well as on the size of the two smaller em
spaces created due to deposition. Substituting this into
~2! with n53 andm52, we obtain the rate equation

]c~x,t !

]t
52

xa14

~a13!~a14!
c~x,t !

12E
x

l

x~y2x!a12c~y,t !dy for x< l . ~30!

Notice thata521 describes the fragmentation process w
the fragmentation kernelF(x,y)5xy @19#. Also notice that
the intensity of the nonlocal character is higher than the p
vious model, for which we find it increasingly difficult to
find the scaling solution. Nevertheless, for our purpose i
enough to know that scaling exists. Substituting the defi
tion of the moment into the above equation yields

dM~n,t !

dt
5FG~n12!G~a15!

G~n1a15!
21GM ~n1a14,t !.

~31!

We find that the asymptotic behavior of the moment c
provide some of the interesting features of the syste
Hence, from now on we are only interested in finding t
fractal dimension of the system that can uniquely charac
ize the structure. Following a similar procedure as we ha
done before, we find that the number of segments neede
cover the whole set created scales as

^N~d!&;d2Df ~a!, ~32!

whereDf(a), as before, can be obtained to satisfy

G„Df~a!12…G~a15!

G„Df~a!1a15…
51. ~33!

HereDf(a) is the fractal dimension of the pattern formed b
this model. It is clear that the order of the polynomial equ
tion is determined by thea value. Therefore, the fractal di
mensionDf(a) is different for differenta values. Compar-
ing this model with the previous model, we find that th
fractal dimension for this model is always higher than th
for the previous model for each correspondinga value. Also,
in both cases fractal dimensions appear to decrease m
tonically asa increases. This is a feature that we shall d
cuss in more detail later. We intend to determine if the
exists any relation between the degree of order in the pat
and the fractal dimension. In order to do this we conside
further generalization of the two models we discussed.

V. MODEL III

We now turn to the more general model in which, at ea
time step, more than one particle will attempt to be dep

s
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55 5307FRACTAL DIMENSION AND DEGREE OF ORDER IN . . .
ited. We choose the parking distribution and deposition ra
that are of the same functional form, i.e., we choose
particle size distribution for deposition to take the form

p~xi !5g~xi ! for x< l , ~34!

and the deposition rate

F~xn2m11 , . . . ,xnux1 , . . . ,xn2m!5 )
i5n2m11

n

g~xi !.

~35!

Substituting Eqs.~34! and ~35! into Eq. ~1!, we obtain the
rate equation

]c~x,t !

]t
52Fn~x!c~x,t !1mg~x!E

x

l

c~y,t !

3Fn21~y2x!dy for x< l , ~36!

where the functions$Fn(x),n52,3, . . .% are defined by

Fn~x!5E dS x2(
i51

n

xi D) g~xi !dxi . ~37!

Equation~36! is equivalent to the dynamic system of brea
ing an interval inton pieces and throwing awayn2m of
them at each time step@20#. It is straightforward to show tha

Fn~x!5E
0

x

g~y!Fn21~x2y!dy ~38!

for n>3 and

F2~x!5E
0

x

g~y!~x2y!d. ~39!

We further specify our model by choosingg(y)5yb, with
b treated as an external tunable parameter. Wheng(y)5yb

we can obtain the function$Fn(x),n52,3, . . .% from Eqs.
~38! and ~39! as

Fn~x!5
@G~b11!#n

G„n~b11!…
xn~b11!21. ~40!

It is interesting to note that if we setb50, m52, and
n5a12 in Eq. ~36!, we get the same rate equation for t
empty size distribution as described by model I@Eq. ~5!#
with g50. It reveals that we can give an alternative inte
pretation of model I. That is, at each time step an interva
broken intoa12 random pieces anda of them are removed
from the system. Alternatively, we can say that the expon
a determines the number of particles to be deposited at e
time step on an interval. However, fora.1 them value put
a strong constraint on the depositing particles. That is,
process describes sequential deposition ofa particles con-
secutively as if they were a single particle. Similarly, if w
set b51, m52, and n5(a15)/2, we get the same rat
equation as described by model II. This reveals that at e
time step (a11)/2 are deposited consecutively. These t
features help us to understand the physical role played by
parking distribution exponenta. That is, asa increases the
s
e

-
s

nt
ch

e

ch

he

length of the depositing particles on the average increa
with respect to that of the corresponding lowera value. For
further support we concentrate on the fractal dimension
the resulting pattern.

Since the moments of the empty space distribution fu
tion can characterize the fragmenting systems more ea
than the empty space distribution function itself, we no
consider the behavior of the moment only. Forg(y)5yb, the
time evolution of the moments can be obtained using Eq.~6!,

dM~q,t !

dt
5@G~b11!#n21S mG~q1b11!

G„q1n~b11!…

2
G~b11!

G„n~b11!…DM „q1n~b11!21,t…. ~41!

This equation can be solved for the momentsM (q,t), the
solution again taking the form of a generalized hypergeom
ric function with numerator (n21)(b11) and denominator
parameters. We now consider the scaling behavior of th
models that define the scaling exponentu andz and give the
long-time dependence of the moment asM (q,t)
;tz(u2q21). We can immediately findz for all m, n, anda
because in the long-time limit the moments behave as

M ~q,t !;A~q!t2b~q!. ~42!

Substituting this into the rate equation for the moment yie
a difference equation

b„q1n~b11!21…5b~q!11. ~43!

Iterating this and using theq value for which the momen
becomes time independent, we find

b~q!5
q2q*

n~b11!21
. ~44!

This gives

z5
1

n~b11!21
~45!

andq(b,m,n) related tou by u5Df11 and can be obtained
from Eq. ~41! and satisfies

mG~q1b11!

G„q1n~b11!…
5

G~b11!

G„n~b11!…
. ~46!

In particular, this model can be described as a correla
sequential deposition of particles on a substrate where
degree of correlation is determined by the exponentb.

For the the power-law form of the the parking distributio
function this model describes the deposition
n2m51,2,3, . . . particles and createsm52,3, . . . new
empty spaces, respectively. Ifn2m5p andm,p11 then
them value determines how many of them deposit conse
tively. This deposition phenomenon can equivalently be
terpreted as cutting an interval inton pieces and removing
n2m of the parts created and repeating the process with
remainingm pieces thus resembling the concept of clas
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Cantor set. The fact that the size and position of the parti
to be removed are chosen stochastically, unlike in the Ca
set where there are no kinetics, is irrelevant because we
considering the scaling regimet→`. Since this process is
repeatedad infinitum, it forms stochastic fractals with dimen
sion 0<Df<1. As before, we use the box counting meth
by defining a characteristic lengthd so that we can count th
number of segments required to cover the set whend→0,
which determines the properties of the resulting set
scales as

^N~d!&;d2Df . ~47!

Thus we find that the Hausdorff-Besicovitch dimension
this case is equal toq* . We still havez given by Eq.~45!,
but now the value ofq* ~and henceu andDf) is nontrivial.
This class of fractals includes that considered in@12#, with
n53, m52, and b50. In the limit b→` we can use
Stirling’s formula and the asymptotic formula

G~az1b!;A2pe2az~az!az1b21/2 ~48!

in Eq. ~46! to find thatq* (5Df)→ lnm/lnn. This coincides
with the fractal dimension of the classic Cantor set. That
in the limit b→` the standard deviation of the size of th
pieces created tends to zero. This is easily verified by ca
lating the mean and standard deviations fromF$xi%. This
particular finding implies that in this limitFn(x) behaves
approximately as

Fn~x!5xlE d~x12x3!dx1E d~x12x2!dx2•••

3E dS x12S x2 (
i51

n21

xi D D dxn21 . ~49!

Substituting this into Eq.~36!, we obtain

]c~x,t !

]t
52

xl

n
c~x,t !1m~nx!lc~nx,t !. ~50!

This describes a model that splits an interval inton equal
pieces and keeps onlym of them. Substituting the definition
of the moment~6! into Eq. ~50!, we obtain

dM~q,t !

dt
5F m

nq112
1

nGM ~q1l,t !. ~51!

The solution of Eq.~51! is

M ~q,t !;t2~q2Df !/l ~52!

and immediately reveals thatDf5 lnm/lnn, as in the classic
Cantor set with kinetic exponent 1/l. In the limit b11→0
we can analyze Eq.~46! to show thatq* ~andDf) tends to
zero like g(m,n)(b11), where g(m,n)5n(m21)/
(n2m). Consequently, we see that for allm andn there is a
spectrum of fractal dimensions betweenb→21, when
Df→0, andb→`, whenDf→ lnm/lnn. This is a very strik-
ing result. It implies that in the limitb→` particles are
deposited only in the center of the empty space and prod
strictly self-similar patterns.
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VI. SUMMARY AND DISCUSSION

In this work we presented a number of interesting resu
relating to random and correlated sequential deposition
mixture of particles of finite sizes. We found that the patte
created is statistically scale invariant. We also attempted
show the relationship between the fractal dimension and
degree of order in the resulting pattern created in the lo
time limit. In Table I we presented some values of the frac
dimension as a function ofm and n for model I ~or for
b50 using model III! with a51. The corresponding fracta
dimension for the Cantor set are given in parentheses
Table II we give the fractal dimension form52 andn53
for some different values ofb. Table II and a more numeri
cal survey confirm that the fractal dimension increas
monotonically asb increases. Moreover, the fractal dime
sion appears to decrease asn increases for a givenm and
vice versa, providedn2m.0. In Table III we compare the
fractal dimensions for different values ofa for models I and
II. This table and further details of the numerical surv
confirm that for the samea value, model II creates a patter
that has a higher fractal dimension than that for model I. W
further notice that the first row of Table II for fractal dimen
sion with m52 is exactly the same as in Table III wit
b50 anda51,2,3. Similarly, the fractal dimension obtaine
from model III for b51,m52, andn5(a15)/2 would be
the same as that obtained from model II for the correspo
ing (a11)/251,2, . . . . This further shows that asa in-
creases the length of the deposited particles on the ave
increases with respect to that of a corresponding aver
length for a lowera value, which appears to be consiste
with our detailed survey that reveals that fractal dimens
decreases monotonically asa increases, and asa→` the
fractal dimensionDf→0. These observations immediate
confirm that the exponenta does not play any role in creat

TABLE II. Fractal dimensionDf of stochastic fractals for
m52 andn53 for increasingb values.

b Df

2
1
2

1
2

0 0.5616288
1
2 0.5841
1 0.5956
2 0.6073
` 0.6309

TABLE III. Fractal dimensionDf for b50,1 for different val-
ues ofa.

a b50 b51

1 0.5616 0.5956
2 0.4348 0.5183
3 0.3723 0.466542
4 0.33405 0.429121
5 0.30784 0.400614
6 0.288505 0.37805
7 0.27351 0.35966
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ing the ordered pattern since the fractal dimension does
reach a constant nonzero value asa→`.

In a recent Letter@21#, Brilliantov et al. studied the ran-
dom sequential adsorption of a mixture of particles with
continuous distribution of sizes determined by the power-
form @Eq. ~3!#. They reported that the pattern created in t
long-time becomes more and more ordered asa increases
and in two dimensions it reaches the Apollonian packing
the limit a→` when the depositing particles are a fini
mixture of disks. It is important to notice that the on
dimensional analog of this model is the deposition of a m
ture of rods. Evidently, one expects the fractal dimension
coincide with the classic Cantor set when the pattern
comes a perfectly ordered pattern. In Ref.@21# an exact ex-
pression for the fractal dimension is also given for the g
erald dimension. It is also clear that the Apollonian packi
is a nonrandom or strictly self-similar fractal-like Sierpins
gasket difference that lies only in the geometry of the dep
iting particles. The observation that the pattern becom
more and more ordered should be true for any dimension
for any geometry includingd51. That is, in order to suppor
the result that in the limita→` the pattern becomes mor
and more ordered, the fractal dimension must reach a c
stant nonzero value in that limit. In particular, asa→` the
fractal dimension must reach the value ln2/ln3, which is
one-dimensional analog of both the Apollonian packing a
Sierpinsky gasket. In one dimension we can solve the mo
exactly, which corresponds to our model I. The exact e
meration of the fractal dimension and detailed numerical s
vey reveals thatDf→0 asa→` instead of reaching a con
stant nonzero value. Therefore, the analysis we give in
work contradicts the result reported in@21#. More recently,
deposition of a finite mixture of rectangles in a tw
dimensional substrate is studied in Ref.@22#. Although in
this work particles are allowed to deposit on only one of
four corners, the model in Ref.@21# retains the generic fea
tures of deposition phenomena of a definite mixture and
particular is very close to the model we consider in t
work. The work in Ref.@22,23# is the stochastic counterpa
of the deterministic Sierpinsky carpet or Cantor gasket@1#,
which are strictly self-similar. In this deterministic case, t
initiator is a square and the generator subdivides at each
into b2 equal squares,p of which are removed according t
a fixed rule. After an infinite number of iterations the resu
ing set can be seen as a generalization of the Cantor s
two dimensions that has the fractal dimensi
Df5 ln(b22p)/lnb. However, in the case of its stochast
counterpart we have shown that the system does not r
simple scaling; instead the system shows multiscaling, a
sult that we believe to be true for the deposition of a fin
mixture of particles of any geometry in more than one
mension. That is, the pattern created in the long-time li
has a global scaling exponentDf and a local scaling expo
nent known asf (q), whereq is the Holder exponent. That is
the pattern can be divided into a subset that scales with
ferent fractal dimension, a phenomena called multifrac
ity@2,15#. However, in the case of a strictly self-similar pa
tern the system reaches a simple scaling behavior. The s
further revealed that the global exponent or the fractal
mension of the random fractal is always lower than its c
responding strictly self-similar counterpart. Therefore,
ot
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conclude that the fractal dimension must increase with
creasing order and reaches a maximum value when the
tern is in perfect order. In this work we show that the exp
nenta does not play any role in creating an ordered patte
Instead, it implies that the length of the deposited particle
each time step increases on average as thea value increases

In order to create an ordered pattern we reveal that
needs to chooseF(x,yuz);(xy)b andp(z);zb. This model
for bÞ0 describes that at each event an empty spac
chosen randomly. However, once this decision has b
made, particles are more likely to deposit at the center of
empty space than on either side of it. Of course, the tende
to deposit at the center increases asb increases. In fact, ou
analysis further supports that the fractal dimension increa
with the degree of increasing order and reaches its maxim
value~a nonzero constant! in the perfectly ordered pattern, a
it does in the classic Cantor set or in the Seirpinsky gas
Krapivsky and Ben-Naim reported in@12# that the dimension
of the random fractal is always smaller than its determinis
counterpart. If we look at the situation for the stochas
Cantor set, we find that in order to get the determinis
classic set (lnm/lnn) a alone does not play any role in cre
ating any ordered pattern. Instead, one has to cho
F(x,yuz) to be the same power-law form as for the parki
distribution p(z), e.g., model III. In this case only theb
value determines the degree of tendency to place the
ticles in the center of the empty space and in the lim
p→` particles are always placed exactly at the center of
empty space. We can quantify the increasing regularity
the resulting pattern created in the long-time limit by intr
ducing the concept of entropy production that characteri
the degree of order as

S52(
Ck

p~Ck!lnp~Ck!. ~53!

Since in theb→` limit there is only one definite configu
ration, we havep(Ck)51, which contributes to the entropy
In fact, we can define

p~Ck!5
Df

lnm/ lnn
, ~54!

where eachDf corresponds to one definite configuration. W
find thatS increases asb decreases towards zero. That is,
b decreases the number of possible configurations increa
In this work, we generalize the conventional random sequ
tial absorption where the position of a particle to be dep
ited in the empty space is chosen randomly and the degre
randomness is determined by the position-dependent dep
tion rate. That is, the position where the particle is to
placed is chosen by the size of the empty space being
stroyed and by the size of the empty spaces created on e
side. As a prospect of future work one can choo
p(z)5d(x21) and F(x,yuz) to be position dependent
Studying random sequential absorption with these choic
the system obviously will reach a jamming limit, but how
varies with the degree of order can be of greater phys
interest.
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